Debugging Intuition

How to calculate the probability of at least k
successes in n trials?

= X is number of successes in n trials each with
probability p

c P(X > k) = First clue that
— something is wrong.

n Don'f care ClbOU"' Think abOUt p =1
( ) pk the rest
k Not mutually
oX
'\mObob\\'\’(\l s:ess exclusive...
e SO
ot for wucoess oo

Correctt P(X > k) = Zn: (?)pi(i _ )

1=k






Learning Goals

1. Be able to calculate variance for a random variable
2. Be able to recognize and use a Bernoulli Random Var
3. Be able fo recognize and use a Binomial Random Var




Is Peer Grading Accurate Enough?

Peer Grading on Coursera
L HCI.

31,067 peer grades for
3,607 students.

Tuned Models of Peer Assessment. C Piech, J Huang, A Ng, D Koller



Review: Random Variables

A random variable takes on values
probabilistically.

For example:
X 1s the sum of two dice rolled.

1
P(X=2)=%



Review: Probability Mass Function

The probability mass function (PMF) of a
random variable is a function from values
of the variable to probabilities.

py(k) = P(Y = k)
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Review: Expectation

The expectation of a random variable is the
“average” value of the variable (weighted by
probability).

—— E[X] =

0.14

0.12
- 0.10
P (X - X) 0.08
0.06
0.04

0.02 I I
0.00

2 3 4 6 1

8 9 10 11 12

be



Properties of Expectation

. Linearity:

FElaX +b] =aF[X]|+b

= Consider X = 6-sided dieroll, Y =2X —-1.
= E[X]=3.5 E[Y]=6

- Expectation of a sum is the sum of expectations

E[X +Y] = E[X] + E[Y]

- Unconscious statistician:

Elg(X)] =) _g(z)P(X = x)



Review: Linearity of Expectation

Adding random variables or constants? Add
the expectations. Multiplying by a constant?
Multiply the expectation by the constant.

FlaX +b] =aF|X]|+b

i

2X+4



Review: Expectation of Sums

E[X +Y] = E[X] + E[Y]
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E(X) + E(Y) = E(X+Y)



Fundamental Properties

Semantic
Meaning P(X=x)
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Random
Variable



Is E[X] enough?



Intuition

Peer Grading on Coursera

. HCI.
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4 p - 31,067 peer grades for
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X 1s the score a peer grader gives to an assignment submission

True grade




Variance

- Consider the following 3 distributions (PMFs)
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- All have the same expected value, E[X] =
- But “spread” in distributions is different
- Variance = a formal quantification of “spread”



Peer Grades in Coursera HCI

Let X be a random variable that represents a peer grade

True grade = 58
E[X]=57.5

20 40 60 80 100



Peer Grades in Coursera HCI

Let X be a random variable that represents a peer grade
Var(X) = E[(X — p)°]

True grade = 58
E[X]=57.5
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Peer Grades in Coursera HCI

Let X be a random variable that represents a peer grade
Var(X) = E[(X — p)°]

True grade = 58 X (X — )’
E[X] =575 25 points 1056 points?
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Peer Grades in Coursera HCI

Let X be a random variable that represents a peer grade
Var(X) = E[(X — p)°]

True grade = 58 X (X — )
E[X] =575 25 points 1056 points?
80 points 506 points?
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Peer Grades in Coursera HCI

Let X be a random variable that represents a peer grade

Var(X) = E[(X - u)’]

True grade = 58 X
“Al IZ o1 25 points
| 80 points
_ 50 points
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Peer Grades in Coursera HCI

Let X be a random variable that represents a peer grade
Var(X) = E[(X — p)°]

True grade = 58 X (X — )’
E[X] =575 25 points 1056 points?

80 points 506 points?
50 points 56 points?
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Peer Grades in Coursera HCI

Let X be a random variable that represents a peer grade
Var(X) = E[(X — p)°]

True grade = 58 X (X — )’
E[X] =575 25 points 1056 points?

80 points 506 points?
50 points 56 points?

E [(X — u)%] = 52 points?

|
|
I
I
I
I
| Std(X) = 7.2 points
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Variance

- If X'is a random variable with mean u then the
variance of X, denoted Var(X), is:

Var(X) = E[(X — u)’]

+ Note: Var(X) =0

- Also known as the 2nd Central Moment, or

square of the Standard Deviation



Normalized histograms are
approximations of
probability mass functions
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Computing Variance

Var(X) =E[(X—/1)2] Note: U = E[X]
= (x— )’ p(x)

= > (X =2ux+ p*) p(x)

=X p(x)=2p) xp(x)+ 4 Y p(x)

— E:Xz: —2,L1E[X]+,uz Ladies and gentlemen, please
Ca- S welcome the 2" moment!
=FE|X"|-2u "+ u

= E[X*]-p°
= E[X*]-(E[X])’




Variance of a 6 sided dice

- Let X = value on roll of 6 sided die

- Recall that E[X] = 7/2
. Compute E[X?]

E[X*]= (12)é + (22)é + (32)1 L (42)1 N (52)1 N (62)1 _9

Var(X) = E[X°]—-(E[X])

_ﬂ_(ljz_ﬁ
6 2 12



Properties of Variance

. Var(aX + b) = a?Var(X)
» Proof:
Var(aX +b) = E[(aX + b)]] — (E[aX + b])?
= E[a®X? + 2abX + b?] — (aE[X] + b)?
= a’E[X?] + 2abE[X] + b? — (@®(E[X])? + 2abE[X] + b?)
= a’E[X?] — a*(E[X])* = a*(E[X?] - (E[X])?)
= a’Var(X)
. Standard Deviation of X, denoted SD(X), is:
SD(X) =,/ Var(X)
. Var(X) is in units of X?
« SD(X) is in same units as X




Fundamental Properties

Semantic
Meaning P(X=x)

Random
Variable

E[X2]



Lots of fun with Random Variables



Classics






Jacob Bernoulli

- Jacob Bernoulli (1654-1705), also known as
‘James”, was a Swiss mathematician

271\ o
- One of many mathematicians in Bernoulli family
- The Bernoulli Random Variable is named for him

. He is my academic great'?

- Same eyes as Ice Cube

-grandfather



Bernoulli Random Variable

Experiment results in “Success” or “Failure”

« Xis random indicator variable (1 = success, 0 = failure)
- PX=1)=p(1)=p P(X=0)=p(0)=1-p

« Xis a Bernoulli Random Variable: X ~ Ber(p)

. EX]=p — \
= Var(X) = p(1 - p) Feel the Bern!

Examples 9 J
= coin flip

» random binary digit
= whether a disk drive crashed
= whether someone likes a netflix movie



Does a Program Crash?

!!E

Run a program, crashes with prob. p, works with prob. (1 —p)

X: 1if program crashes
PX=1)=p
P(X=0)=1-
X ~ Ber(p)

p




Does a User Click an Ad?

Serve an ad, clicked with prob. p, ignored with prob. (1 — p)

C: 1if adis clicked

PC=1)=p
PC=0)=1-p

C ~ Ber(p)




More!



Binomial Random Variable

Consider n independent trials of Ber(p) rand. var.

= X is number of successes in n trials
« X is a Binomial Random Variable: X ~ Bin(n, p)

n
I

P(X =1) = p(i) =( jpi(l—p)”i i=0L...n
« By Binomial Theorem, we know that ZP(X =i)=1
i=0

Examples
« # of heads in n coin flips
« # of 1's in randomly generated length n bit string

« # of disk drives crashed in 1000 computer cluster
o Assuming disks crash independently



Probability of

0 4 Num success on each
ur random trials trial

variable 1 ‘& /
X ~ Bin(n, p)
/]

Is distributed Binomial

as a With these
parameters



If X is a binomial with parameters n and p

Probability Mass Function
for a Binomial

K —

\

™~
T _
P(X=k)=(, p"(1 —p)F

Probability that our
variable takes on the
value Kk



Bernoulli vs Binomial

Bernoulli is an indicator RV

Binomial is the sum of n
Bernoullis




Three Coin Flips

- Three fair ("heads” with p = 0.5) coins are flipped
« X is number of heads
« X~Bin(n=3,p=0.95)

3) .1
P(X =0)= (jp (1-p) =3

3
1

_3

P(X =1)= Op(l p)’ =

\USEE \O)

8
3 3
P(X = 22( p’(1-p) =3

P(X =3)=

1
31_ O:_
p(1-p) .

Wl



Properties of Bin(n, p)

Consider: X ~ Bin(n, p)
n
i

. P(Xzi)zp(i)z( )pi(l—p)”i i=01,...,n

- E[X]=np

+ Var(X) = np(l - p)

- Note: Ber(p) = Bin(1, p)



E(X?)

| Really Want the Proof of Var :)

]

nplin=Dplp+g™ ' +(p+q))
np(in—1p+1)
n2p2+np(l -p)

Definion of Binomial Distribution: p 4 ¢ = |

Factors of Binomial Coetficsent: k(:) = n(: s :)

Change of imil: term is zerowhen k - | = 0
putting j =k - I.m=n— |
Spating SuUm up INGO two

m— |
Factors of Binomial Coemcam.j(m) = m(m l )
J ' S

Change of imil: term is zero when j — | = ()

Binomeal Theoram
asp+g=1
by algebra



How Many Program Crashes?

EEERRE
| o\ i\ - » AT

n runs of program, each crashes with prob. p, works with prob. (1 —p)

H: number of crashes

H ~ Bin(n, p)

P(H=k) = (Z) (p)k(1 — p)n*
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1000 ads served, each clicked with p = 0.01, otherwise ignored.
H: number of clicks

H ~ Bin(n = 1000, p = 0.01)

P(H = k) = <1Ok00) (0.01)*(0.99)'0%0~*

Variance of number of ads clicked?
E[H]=np =10
Var(H) = np(1-p) = 9.9 Std(H) = 3.15



Galton Board




Galton Board

When a marble hits a pin, it has
equal chance of going left or
right.




Galton Board

When a marble hits a pin, it has
equal chance of going left or
right. Each pin represents an
iIndependent event.




Galton Board

The bucket index that a marble
lands in is equal to the number of
times the marble went right




Galton Board

We can define an indicator
random variable (R) which
represents whether a particular
marble goes right as a Bernoulli
~ Ber(0.5)




Galton Board

We can define an indicator
random variable (B) which
represents what bucket a marble
lands in.




Galton Board

We can define an indicator
random variable (B) which
represents what bucket a marble
lands in. B ~ Bin(levels, 0.5)
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We can define an indicator
random variable (B) which
represents what bucket a marble
lands in. B ~ Bin(35, 0.5)




Galton Board

We can define an indicator
random variable (B) which
represents what bucket a marble
lands in. B ~ Bin(35, 0.5)

Calculate the probability of a
marble landing in a bucket.




Galton Board

We can define an indicator
random variable (B) which
represents what bucket a marble
lands in. B ~ Bin(35, 0.5)

Calculate the probability of a
marble landing in a bucket.

5\ 1°
° P(B:O):(O)5 ~ 0.03




Galton Board

We can define an indicator
random variable (B) which
represents what bucket a marble
lands in. B ~ Bin(35, 0.5)

Calculate the probability of a
marble landing in a bucket.




Galton Board

We can define an indicator
random variable (B) which
represents what bucket a marble
lands in. B ~ Bin(35, 0.5)

Calculate the probability of a
marble landing in a bucket.

15
o P(B=2)= (5) = ~031




Galton Board

We can define an indicator
random variable (B) which
represents what bucket a marble
lands in. B ~ Bin(35, 0.5)

Calculate the probability of a
marble landing in a bucket.

o P(B=3) = <5) U 031




Galton Board

We can define an indicator
random variable (B) which
represents what bucket a marble
lands in. B ~ Bin(35, 0.5)

Calculate the probability of a
marble landing in a bucket.

PDF




FROM CHAOS TO ORDER



PMF for X ~ Bin(10, 0.5)
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PMF for X ~ Bin(10, 0.3)
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Genetic Inheritance

Person has 2 genes for trait (eye color)

= Child receives 1 gene (equally likely) from each parent
= Child has brown eyes if either (or both) genes brown

= Child only has blue eyes if both genes blue

« Brown is “dominant” (d) , Blue is “recessive” (r)

« Parents each have 1 brown and 1 blue gene

- 4 children, what is P(3 children with brown eyes)?
= Child has blue eyes: p = (2) (2) =7 (2 blue genes)
« P(child has brown eyes) =1 - (74) =0.75

« X = # of children with brown eyes. X ~ Bin(4, 0.75)

P(X =3)= @(0.75)3 (0.25)' = 0.4219






Probability you win a series?

Warriors are going to play the Bucks 1n a best of 7 series during
the 2017 NBA finals. What 1s the probability that the warriors
win the series? Each game 1s independent. Each game, the
warriors have a 0.55 probability of winning? Win series 1f you
win at least 4 games.

Let X be the number of games won. X ~ Bin(n= 7, p = 0.55).
P(X > 3)?

-J



Is Peer Grading Accurate Enough?

Looking ahead

Peer Grading on Coursera

L HCI.
- 31,067 peer grades for
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Tuned Models of Peer Assessment. C Piech, J Huang, A Ng, D Koller



Is Peer Grading Accurate Enough?

Looking ahead

1. Defined random variables for:
* True grade (s;) for assignment i
- » Observed (z/) score for assign i
- Bias (b;) for each grader j
- Variance (r;) for each grader j

o i\ 2. Designed a probabilistic model that
e m defined the distributions for all random
7 & variables Prop,
A em
o i \5- Par‘qm

s; ~ Bin(points, 0)

ZgNN(,LL:Si—Fbj,O': ”I“j)

Tuned Models of Peer Assessment. C Piech, J Huang, A Ng, D Koller



Is Peer Grading Accurate Enough?

Looking ahead

1. Defined random variables for:
* True grade (s;) for assignment i
» Observed (z/) score for assign i
- Bias (b;) for each grader j
- Variance (r;) for each grader j

N
2. Designed a probabilistic model that

. defined the distributions for all random

variables

3. Found the variable assignments that
maximized the probability of our
observed data ;‘

Tuned Models of Peer Assessment. C Piech, J Huang, A Ng, D Koller



Yes, With Probabilistic Modelling

Before: After:

81% V970

within within
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Tuned Models of Peer Assessment. C Piech, J Huang, A Ng, D Koller



=
o0

Standard deviation of residual
O
~J

Grading Sweet Spot

“sweet spot of grading”: ~
20 minutes

-0.30 -0.25 -0.20 -0.15 -0.10
Time Grading (z-score)






Voila, c'est tout






