
• How to calculate the probability of at least k
successes in n trials?
§ X is number of successes in n trials each with 

probability p
§

Debugging Intuition

Correct:

First clue that 
something is wrong. 

Think about p = 1

# ways to choose 
slots for success
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ility tha

t 

each is
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Not mutually 
exclusive…

Don’t care about 
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1. Be able to calculate variance for a random variable
2. Be able to recognize and use a Bernoulli Random Var
3. Be able to recognize and use a Binomial Random Var

Learning Goals



Is Peer Grading Accurate Enough?

Peer Grading on Coursera
HCI. 

31,067 peer grades for 
3,607 students.  

Tuned Models of Peer Assessment. C Piech, J Huang, A Ng, D Koller
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Review: Random Variables

For example:
X is the sum of two dice rolled.

A random variable takes on values 
probabilistically.
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Review: Probability Mass Function

The probability mass function (PMF) of a 
random variable is a function from values 
of the variable to probabilities.
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E[X] = 7

Review: Expectation

The expectation of a random variable is the 
“average” value of the variable (weighted by 
probability).



• Linearity:

§ Consider X = 6-sided die roll,  Y = 2X – 1.
§ E[X] = 3.5 E[Y] = 6

• Expectation of a sum is the sum of expectations

• Unconscious statistician:

Properties of Expectation

E[aX + b] = aE[X] + b

E[X + Y ] = E[X] + E[Y ]



Adding random variables or constants? Add 
the expectations. Multiplying by a constant? 
Multiply the expectation by the constant.

X

2X

2X + 4

Review: Linearity of Expectation

E[aX + b] = aE[X] + b



Review: Expectation of Sums

E[X + Y ] = E[X] + E[Y ]



Random 
Variable

E[X]

P(X=x)
Semantic 
Meaning

Fundamental Properties



Four Prototypical Trajectories

Is E[X] enough?



Intuition

Peer Grading on Coursera
HCI. 

31,067 peer grades for 
3,607 students.  



X is the score a peer grader gives to an assignment submission
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• Consider the following 3 distributions (PMFs)

• All have the same expected value, E[X] = 3
• But “spread” in distributions is different
• Variance = a formal quantification of “spread”

Variance



Peer Grades in Coursera HCI
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Peer Grades in Coursera HCI

-80 -60 -40 -20 0 20 40 60 8060 80 10040200

True grade = 58
E[X] = 57.5 

Let X be a random variable that represents a peer grade
Var(X) = E[(X – µ)2]

X (X – µ)2
25 points 1056 points2

80 points 506 points2

50 points 56 points2

…

E [(X – µ)2] = 52 points2

Std(X) = 7.2 points



• If X is a random variable with mean µ then the 
variance of X, denoted Var(X), is:

Var(X) = E[(X – µ)2]

• Note: Var(X) ≥ 0

• Also known as the 2nd Central Moment, or 
square of the Standard Deviation

Variance
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Normalized histograms are 
approximations of 
probability mass functions
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Ladies and gentlemen, please 
welcome the 2nd moment!

Computing Variance

Note: µ = E[X]



• Let X = value on roll of 6 sided die
• Recall that E[X] = 7/2
• Compute E[X2]
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Variance of a 6 sided dice



• Var(aX + b) = a2Var(X)
§ Proof:

Var(aX + b) = E[(aX + b)2] – (E[aX + b])2

= E[a2X2 + 2abX + b2] – (aE[X] + b)2

= a2E[X2] + 2abE[X] + b2 – (a2(E[X])2 + 2abE[X] + b2)
= a2E[X2] – a2(E[X])2 = a2(E[X2] – (E[X])2)
= a2Var(X)

• Standard Deviation of X, denoted SD(X), is:

§ Var(X) is in units of X2

§ SD(X) is in same units as X

)(Var)(SD XX =

Properties of Variance



Random 
Variable

E[X]

P(X=x)
Semantic 
Meaning

Var(X)

Std(X)
E[X2]

Fundamental Properties



Four Prototypical Trajectories

Lots of fun with Random Variables



Four Prototypical Trajectories

Classics





• Jacob Bernoulli (1654-1705), also known as 
“James”, was a Swiss mathematician

• One of many mathematicians in Bernoulli family
• The Bernoulli Random Variable is named for him
• He is my academic great12-grandfather
• Same eyes as Ice Cube

Jacob Bernoulli



• Experiment results in “Success” or “Failure”
§ X is random indicator variable (1 = success, 0 = failure)
§ P(X = 1) = p(1) = p P(X = 0) = p(0) = 1 – p
§ X is a Bernoulli Random Variable:  X ~ Ber(p)
§ E[X] = p
§ Var(X) = p(1 – p)

• Examples
§ coin flip
§ random binary digit
§ whether a disk drive crashed
§ whether someone likes a netflix movie

Bernoulli Random Variable

Feel the Bern!



Run a program, crashes with prob. p, works with prob. (1 – p)

X: 1 if program crashes

P(X = 1) = p
P(X = 0) = 1 - p
X ~ Ber(p)

Does a Program Crash?



Serve an ad, clicked with prob. p, ignored with prob. (1 – p)

C: 1 if ad is clicked

P(C = 1) = p
P(C = 0) = 1 - p
C ~ Ber(p)

Does a User Click an Ad?



Four Prototypical Trajectories

More!



• Consider n independent trials of Ber(p) rand. var.
§ X is number of successes in n trials
§ X is a Binomial Random Variable:  X ~ Bin(n, p)

§ By Binomial Theorem, we know that 

• Examples
§ # of heads in n coin flips
§ # of 1’s in randomly generated length n bit string
§ # of disk drives crashed in 1000 computer cluster

o Assuming disks crash independently
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Binomial Random Variable



X ⇠ Bin(n, p)

Our random 
variable

Is distributed 
as a

Binomial
With these 
parameters

Num
trials

Probability of 
success on each 

trial



P (X = k) =

✓
n
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◆
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If X is a binomial with parameters n and p

Probability that our 
variable takes on the 

value k

Probability Mass Function 
for a Binomial



Bernoulli vs Binomial

Bernoulli is an indicator RV

+

+
+

Binomial is the sum of n
Bernoullis

=



• Three fair (“heads” with p = 0.5) coins are flipped
§ X is number of heads
§ X ~ Bin(n = 3, p = 0.5)
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Three Coin Flips



Consider: X ~ Bin(n, p)

•

• E[X] = np

• Var(X) = np(1 – p)

• Note: Ber(p) = Bin(1, p)

Properties of Bin(n, p)
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I Really Want the Proof of Var :)



n runs of program, each crashes with prob. p, works with prob. (1 – p)

H: number of crashes

P(H = k) =       

H ~ Bin(n, p)

How Many Program Crashes?
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1000 ads served, each clicked with p = 0.01, otherwise ignored.

H: number of clicks

H ~ Bin(n = 1000, p = 0.01)

How Many Ads Clicked?

Variance of number of ads clicked?

P(H = k) =       
✓
1000

k

◆
(0.01)k(0.99)1000�k

Var(H) = np(1-p) = 9.9

E[H] = np = 10

Std(H) = 3.15



Galton Board



Galton Board

When a marble hits a pin, it has 
equal chance of going left or 
right. 



Galton Board

When a marble hits a pin, it has 
equal chance of going left or 
right. Each pin represents an 
independent event.



Galton Board
The bucket index that a marble 
lands in is equal to the number of 
times the marble went right 

0 1 2 3 4 5



Galton Board
We can define an indicator 
random variable (R) which 
represents whether a particular 
marble goes right as a Bernoulli 
R ~ Ber(0.5)

0 1 2 3 4 5



Galton Board

We can define an indicator 
random variable (B) which 
represents what bucket a marble 
lands in.

0 1 2 3 4 5
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random variable (B) which 
represents what bucket a marble 
lands in. B ~ Bin(levels, 0.5)
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We can define an indicator 
random variable (B) which 
represents what bucket a marble 
lands in. B ~ Bin(5, 0.5)



Galton Board

0 1 2 3 4 5

Calculate the probability of a 
marble landing in a bucket.

We can define an indicator 
random variable (B) which 
represents what bucket a marble 
lands in. B ~ Bin(5, 0.5)



Galton Board

We can define an indicator 
random variable (B) which 
represents what bucket a marble 
lands in. B ~ Bin(5, 0.5)

0 1 2 3 4 5

Calculate the probability of a 
marble landing in a bucket.

P (B = 0) =
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⇡ 0.03



Galton Board

0 1 2 3 4 5

Calculate the probability of a 
marble landing in a bucket.

P (B = 1) =

✓
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⇡ 0.16

We can define an indicator 
random variable (B) which 
represents what bucket a marble 
lands in. B ~ Bin(5, 0.5)



Galton Board

0 1 2 3 4 5

Calculate the probability of a 
marble landing in a bucket.

P (B = 2) =
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⇡ 0.31

We can define an indicator 
random variable (B) which 
represents what bucket a marble 
lands in. B ~ Bin(5, 0.5)



Galton Board

0 1 2 3 4 5

Calculate the probability of a 
marble landing in a bucket.

P (B = 3) =

✓
5
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5

⇡ 0.31

We can define an indicator 
random variable (B) which 
represents what bucket a marble 
lands in. B ~ Bin(5, 0.5)



0

Galton Board

1 2 3 4 5

Calculate the probability of a 
marble landing in a bucket.

PDF

We can define an indicator 
random variable (B) which 
represents what bucket a marble 
lands in. B ~ Bin(5, 0.5)
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P(X=k)

PMF for X ~ Bin(10, 0.5)
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P(X=k)

PMF for X ~ Bin(10, 0.3)



• Person has 2 genes for trait (eye color)
§ Child receives 1 gene (equally likely) from each parent
§ Child has brown eyes if either (or both) genes brown
§ Child only has blue eyes if both genes blue
§ Brown is “dominant” (d) ,  Blue is “recessive” (r)
§ Parents each have 1 brown and 1 blue gene

• 4 children, what is P(3 children with brown eyes)?
§ Child has blue eyes: p = (½) (½)  = ¼   (2 blue genes)
§ P(child has brown eyes) = 1 – (¼) = 0.75
§ X = # of children with brown eyes.  X ~ Bin(4, 0.75)
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Genetic Inheritance





Probability you win a series?
Warriors are going to play the Bucks in a best of 7 series during 
the 2017 NBA finals. What is the probability that the warriors 
win the series? Each game is independent. Each game, the 
warriors have a 0.55 probability of winning? Win series if you 
win at least 4 games.

Let X be the number of games won. X ~ Bin(n= 7, p = 0.55).
P(X > 3)?



Is Peer Grading Accurate Enough?

Peer Grading on Coursera
HCI. 

31,067 peer grades for 
3,607 students.  

Tuned Models of Peer Assessment. C Piech, J Huang, A Ng, D Koller

Looking ahead



Is Peer Grading Accurate Enough?

1. Defined random variables for:
• True grade (si) for assignment i
• Observed (zi

j) score for assign i
• Bias (bj) for each grader j
• Variance (rj) for each grader j

Tuned Models of Peer Assessment. C Piech, J Huang, A Ng, D Koller

2. Designed a probabilistic model that    
defined the distributions for all random 
variables

zji ⇠ N (µ = si + bj ,� =
p
rj)

si ⇠ Bin(points, ✓)

Problem param

Looking ahead



Is Peer Grading Accurate Enough?

Tuned Models of Peer Assessment. C Piech, J Huang, A Ng, D Koller

2. Designed a probabilistic model that    
defined the distributions for all random 
variables

3. Found the variable assignments that 
maximized the probability of our 
observed data

1. Defined random variables for:
• True grade (si) for assignment i
• Observed (zi

j) score for assign i
• Bias (bj) for each grader j
• Variance (rj) for each grader j

Inference or Machine Learning

Looking ahead
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99% 
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10pp

Before: After:

Yes, With Probabilistic Modelling

Tuned Models of Peer Assessment. C Piech, J Huang, A Ng, D Koller

81% 
within 
10pp
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“sweet spot of grading”: ~ 
20 minutes

Grading Sweet Spot
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Four Prototypical Trajectories

Voilà, c'est tout




