Debugging Intuition

- How to calculate the probability of at least k successes in n trials?
 - X is number of successes in *n* trials each with probability *p*

•
$$P(X \ge k) =$$

ways to choose

slots for success

First clue that something is wrong. Think about p = 1

Not mutually exclusive...

Correct:
$$P(X \ge k) = \sum_{i=k}^{n} \binom{n}{i} p^{i} (i-p)^{n-i}$$

Probability that each is success

Don't care about p^k the rest

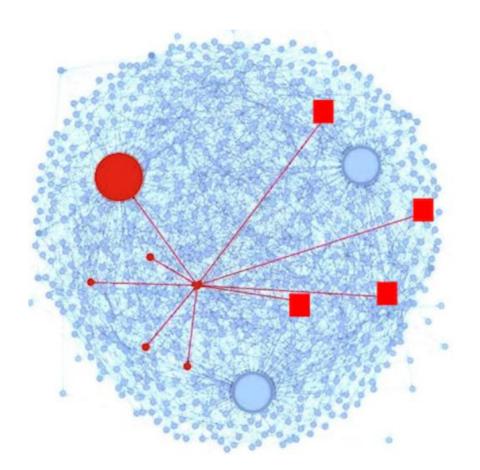


Variance Chris Piech CS109, Stanford University

Learning Goals

Be able to calculate variance for a random variable
 Be able to recognize and use a Bernoulli Random Var
 Be able to recognize and use a Binomial Random Var

Is Peer Grading Accurate Enough?



Peer Grading on Coursera HCI.

31,067 peer grades for 3,607 students.

Tuned Models of Peer Assessment. C Piech, J Huang, A Ng, D Koller

Review: Random Variables

A **random variable** takes on values probabilistically.

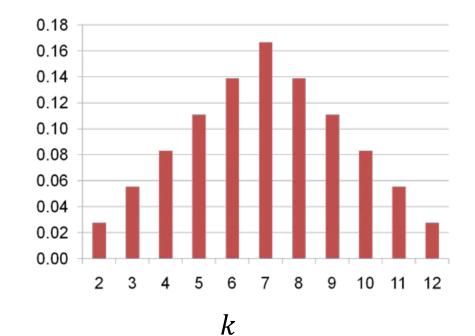
For example: X is the sum of two dice rolled.

$$P(X=2) = \frac{1}{36}$$

Review: Probability Mass Function

The **probability mass function** (PMF) of a random variable is a function from values of the variable to probabilities.

$$p_Y(k) = P(Y = k)$$

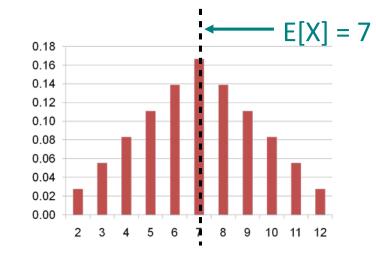


$$P(Y = k)$$

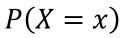
Review: Expectation

The **expectation** of a random variable is the "**average**" value of the variable (weighted by probability).

$$E[X] = \sum_{x:p(x)>0} p(x) \cdot x$$



X



Properties of Expectation

• Linearity:

$$E[aX+b] = aE[X]+b$$

- Consider X = 6-sided die roll, Y = 2X 1.
- E[X] = 3.5 E[Y] = 6
- Expectation of a sum is the sum of expectations

$$E[X+Y] = E[X] + E[Y]$$

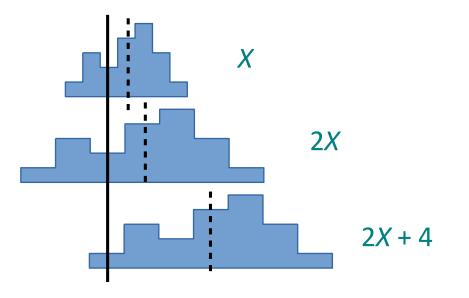
Unconscious statistician:

$$E[g(X)] = \sum g(x)P(X = x)$$

Review: Linearity of Expectation

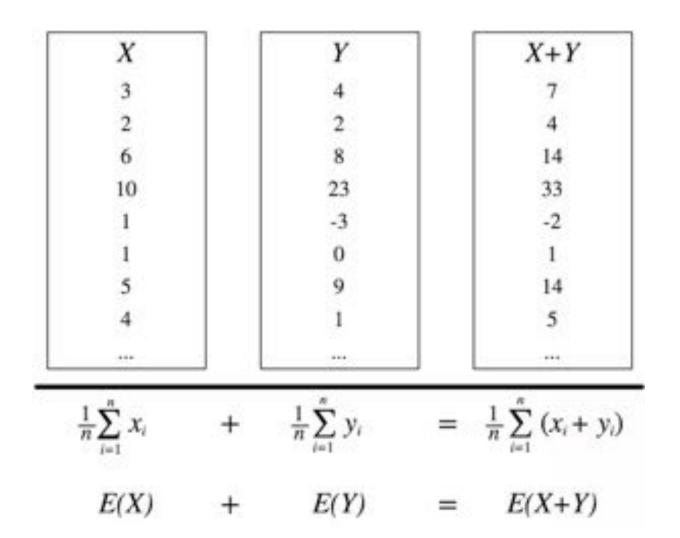
Adding random variables or constants? Add the expectations. Multiplying by a <u>constant</u>? **Multiply** the expectation by the constant.

$$E[aX+b] = aE[X]+b$$

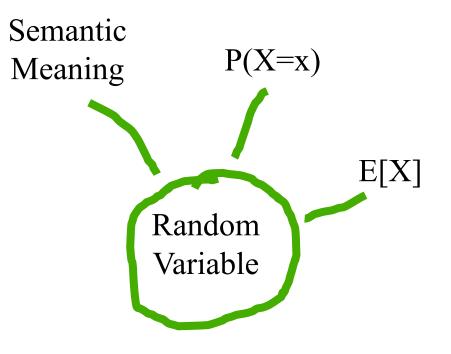


Review: Expectation of Sums

E[X+Y] = E[X] + E[Y]

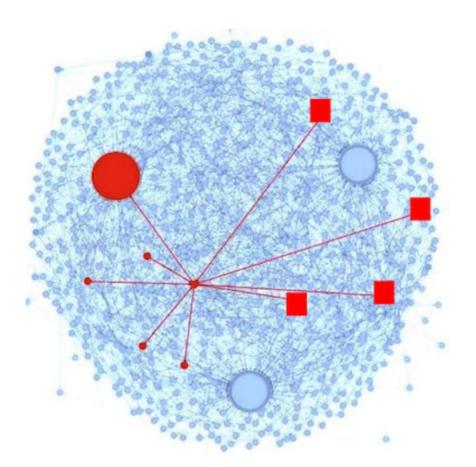


Fundamental Properties



Is E[X] enough?

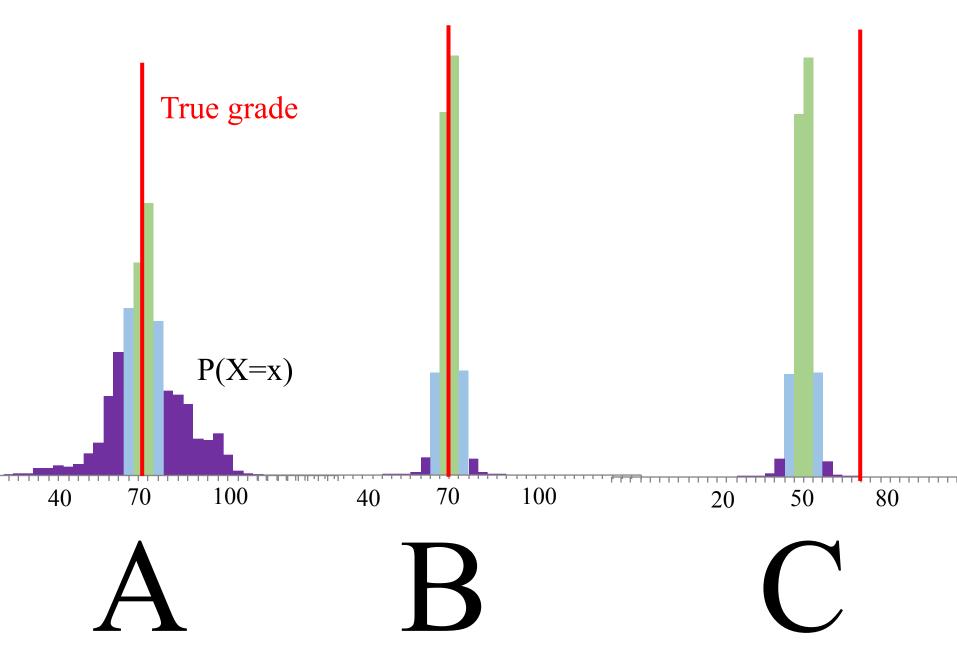
Intuition



Peer Grading on Coursera HCI.

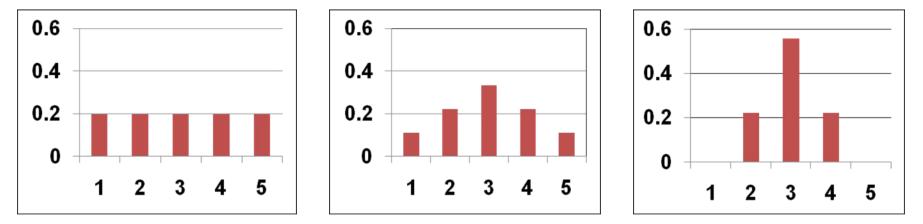
31,067 peer grades for 3,607 students.

X is the score a peer grader gives to an assignment submission



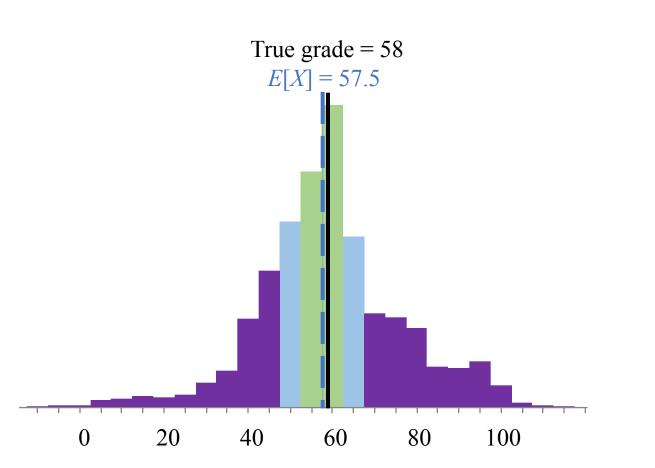
Variance

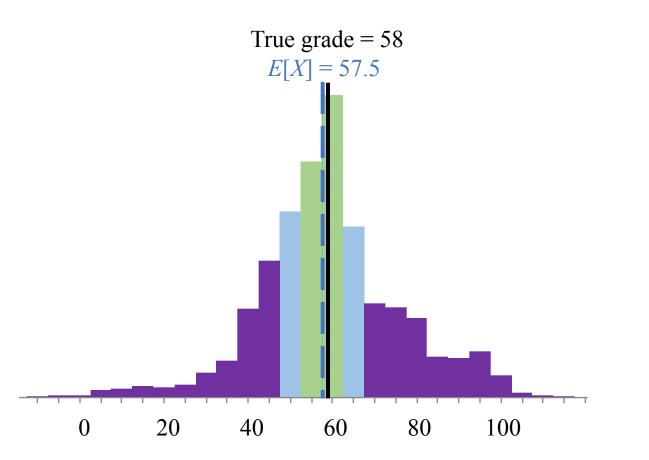
Consider the following 3 distributions (PMFs)

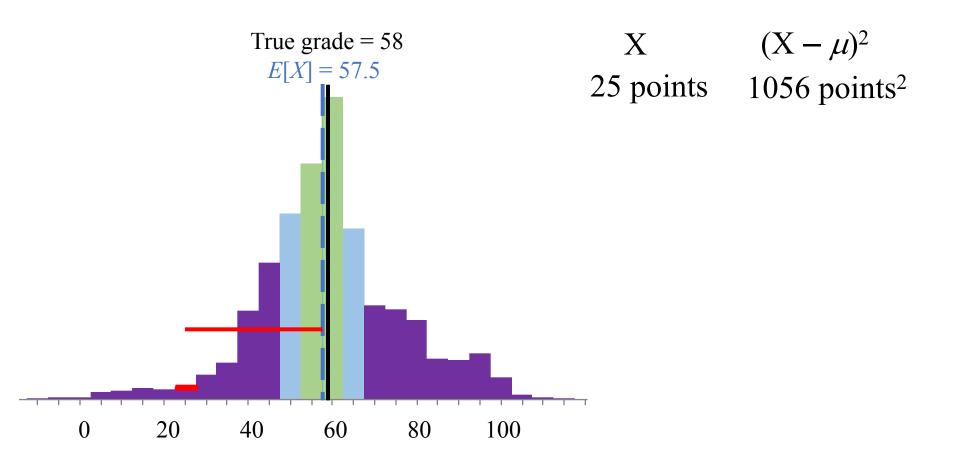


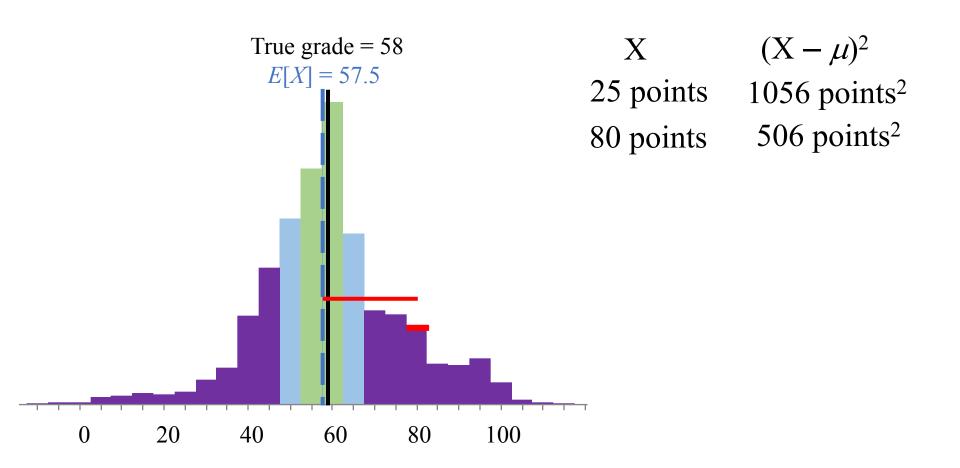
- All have the same expected value, E[X] = 3
- But "spread" in distributions is different
- Variance = a formal quantification of "spread"

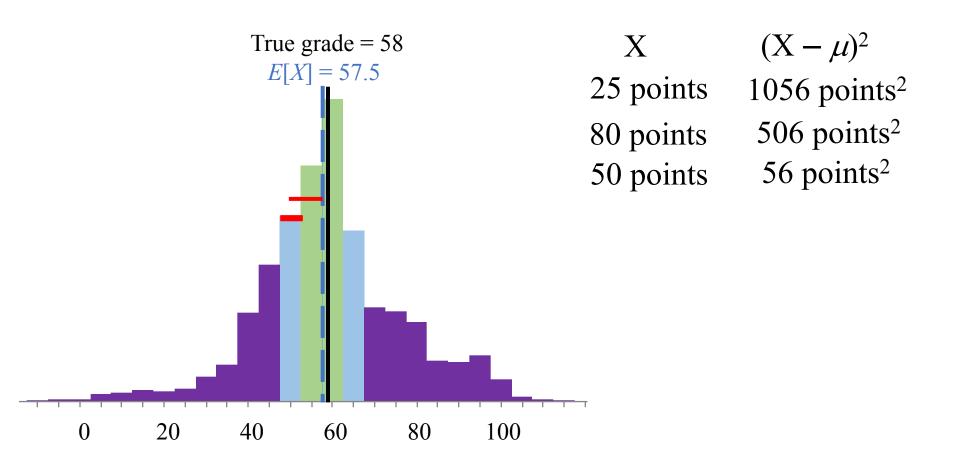
Let *X* be a random variable that represents a peer grade

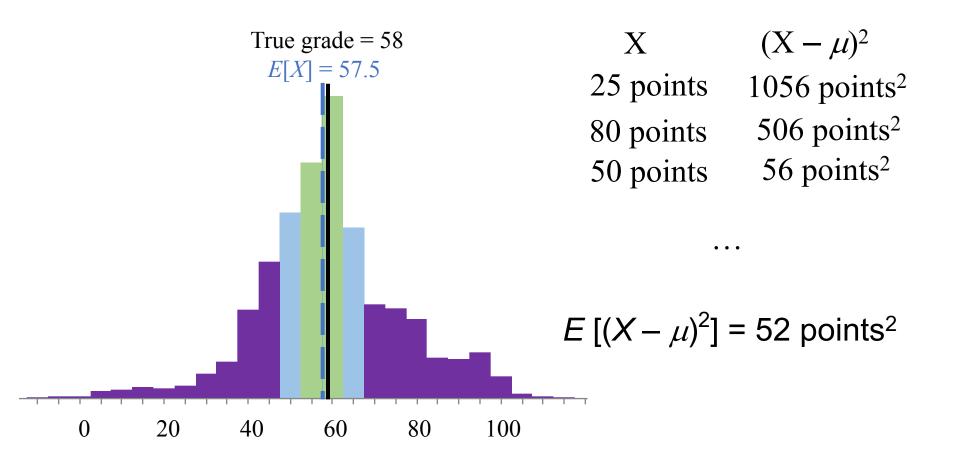


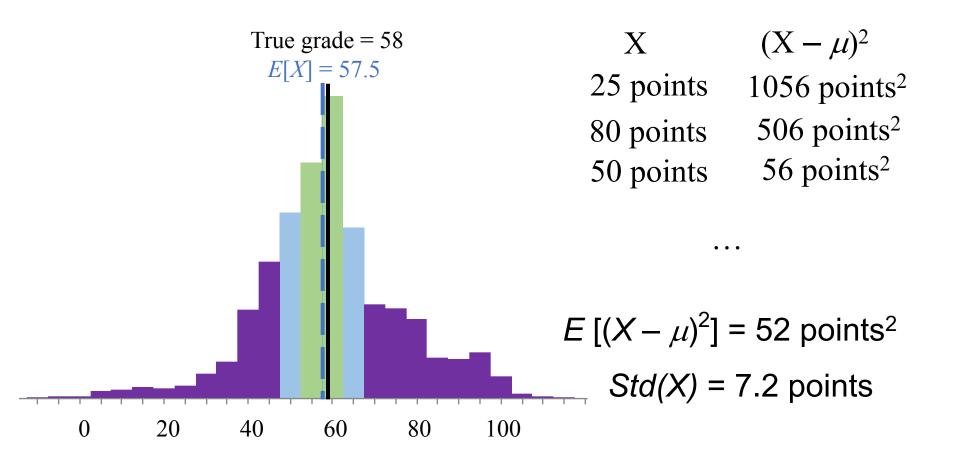








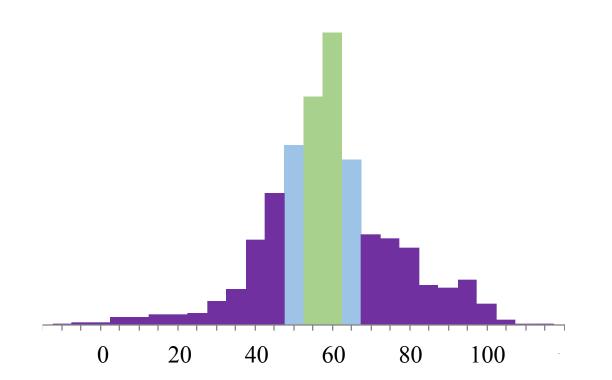




Variance

- If X is a random variable with mean μ then the **variance** of X, denoted Var(X), is: Var(X) = $E[(X - \mu)^2]$
- Note: $Var(X) \ge 0$
- Also known as the 2nd Central Moment, or square of the Standard Deviation

Normalized histograms are approximations of probability mass functions



Computing Variance

$$Var(X) = E[(X - \mu)^{2}]$$

$$= \sum_{x} (x - \mu)^{2} p(x)$$

$$= \sum_{x} (x^{2} - 2\mu x + \mu^{2}) p(x)$$

$$= \sum_{x} x^{2} p(x) - 2\mu \sum_{x} xp(x) + \mu^{2} \sum_{x} p(x)$$

$$= \overline{E[X^{2}]} - 2\mu E[X] + \mu^{2}$$
Ladies and gentlemen, please

$$= E[X^{2}] - 2\mu^{2} + \mu^{2}$$

$$= E[X^{2}] - \mu^{2}$$

$$= E[X^{2}] - (E[X])^{2}$$

Variance of a 6 sided dice

- Let X = value on roll of 6 sided die
- Recall that E[X] = 7/2
- Compute E[X²]

$$E[X^{2}] = (1^{2})\frac{1}{6} + (2^{2})\frac{1}{6} + (3^{2})\frac{1}{6} + (4^{2})\frac{1}{6} + (5^{2})\frac{1}{6} + (6^{2})\frac{1}{6} = \frac{91}{6}$$

$$Var(X) = E[X^{2}] - (E[X])^{2}$$
$$= \frac{91}{6} - \left(\frac{7}{2}\right)^{2} = \frac{35}{12}$$

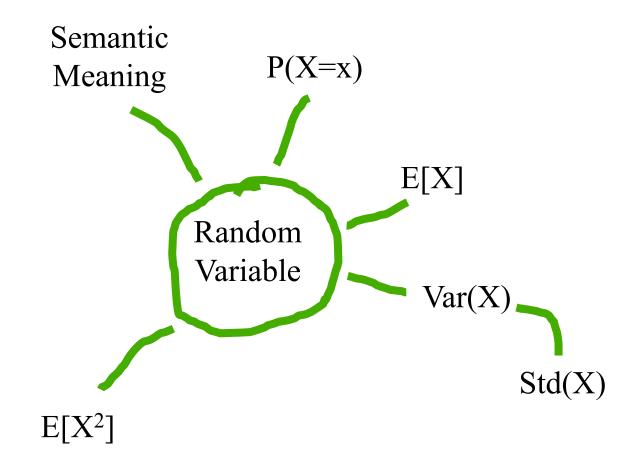
Properties of Variance

- $Var(aX + b) = a^2Var(X)$
 - Proof:

 $Var(aX + b) = E[(aX + b)^{2}] - (E[aX + b])^{2}$ = E[a²X² + 2abX + b²] - (aE[X] + b)² = a²E[X²] + 2abE[X] + b² - (a²(E[X])² + 2abE[X] + b²) = a²E[X²] - a²(E[X])² = a²(E[X²] - (E[X])²) = a²Var(X)

- Standard Deviation of X, denoted SD(X), is: $SD(X) = \sqrt{Var(X)}$
 - Var(X) is in units of X²
 - SD(X) is in same units as X

Fundamental Properties



Lots of fun with Random Variables

Classics

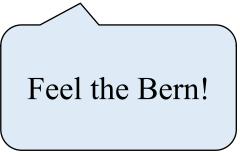
Jacob Bernoulli

 Jacob Bernoulli (1654-1705), also known as "James", was a Swiss mathematician

- One of many mathematicians in Bernoulli family
- The Bernoulli Random Variable is named for him
- He is my *academic* great¹²-grandfather
- Same eyes as Ice Cube

Bernoulli Random Variable

- Experiment results in "Success" or "Failure"
 - X is random **indicator** variable (1 = success, 0 = failure)
 - P(X = 1) = p(1) = p P(X = 0) = p(0) = 1 p
 - X is a <u>Bernoulli</u> Random Variable: X ~ Ber(p)
 - E[X] = p
 - Var(X) = p(1 p)
- Examples
 - coin flip
 - random binary digit
 - whether a disk drive crashed
 - whether someone likes a netflix movie



Does a Program Crash?

Run a program, crashes with prob. p, works with prob. (1 - p)

X: 1 if program crashes

$$P(X = 1) = p$$

 $P(X = 0) = 1 - p$
 $X \sim Ber(p)$

Does a User Click an Ad?

Serve an ad, clicked with prob. p, ignored with prob. (1 - p)

C: 1 if ad is clicked P(C = 1) = p P(C = 0) = 1 - p $\underline{C \sim Ber(p)}$

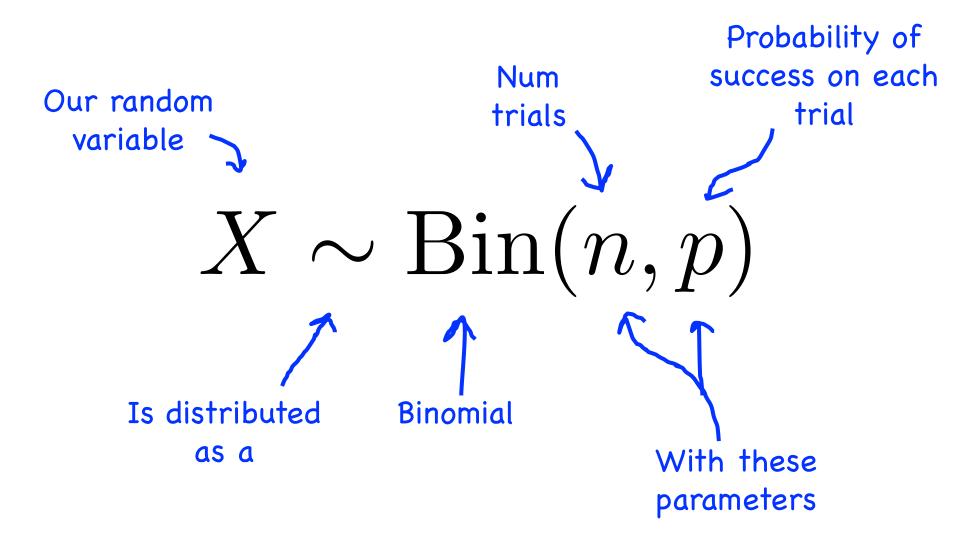
More!

Binomial Random Variable

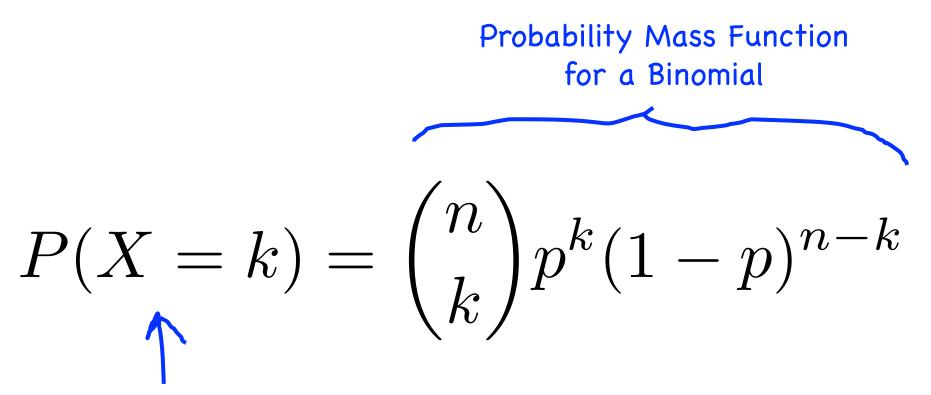
- Consider n independent trials of Ber(p) rand. var.
 - X is number of successes in *n* trials
 - X is a <u>Binomial</u> Random Variable: X ~ Bin(n, p)

$$P(X=i) = p(i) = \binom{n}{i} p^{i} (1-p)^{n-i} \quad i = 0, 1, ..., n$$

- By Binomial Theorem, we know that $\sum_{i=1}^{n} P(X=i) = 1$
- Examples
 - # of heads in n coin flips
 - # of 1's in randomly generated length n bit string
 - # of disk drives crashed in 1000 computer cluster
 Assuming disks crash independently



If X is a binomial with parameters n and p



Probability that our variable takes on the value k

Bernoulli vs Binomial

Bernoulli is an indicator RV

Binomial is the sum of *n* Bernoullis

Three Coin Flips

- Three fair ("heads" with p = 0.5) coins are flipped
 - X is number of heads

$$P(X=0) = {3 \choose 0} p^0 (1-p)^3 = \frac{1}{8}$$
$$P(X=1) = {3 \choose 1} p^1 (1-p)^2 = \frac{3}{8}$$
$$P(X=2) = {3 \choose 2} p^2 (1-p)^1 = \frac{3}{8}$$
$$P(X=3) = {3 \choose 3} p^3 (1-p)^0 = \frac{1}{8}$$

Properties of Bin(n, p)

Consider: $X \sim Bin(n, p)$

•
$$P(X=i) = p(i) = \binom{n}{i} p^i (1-p)^{n-i}$$
 $i = 0,1,...,n$

- E[X] = np
- Var(X) = np(1-p)

• Note: Ber(p) = Bin(1, p)

I Really Want the Proof of Var :)

$$\begin{split} E\left(X^{2}\right) &= \sum_{k\geq0}^{n} k^{2} \binom{n}{k} p^{k} q^{n-k} \\ &= \sum_{k=0}^{n} kn \binom{n-1}{k-1} p^{k} q^{n-k} \\ &= np \sum_{k=1}^{n} k\binom{n-1}{k-1} p^{k-1} q^{(n-1)-(k-1)} \\ &= np \sum_{j=0}^{m} (j+1) \binom{m}{j} p^{j} q^{m-j} \\ &= np \left(\sum_{j=0}^{m} j\binom{m}{j} p^{j} q^{m-j} + \sum_{j=0}^{m} \binom{m}{j} p^{j} q^{m-j}\right) \\ &= np \left(\sum_{j=0}^{m} m\binom{m-1}{j-1} p^{j} q^{m-j} + \sum_{j=0}^{m} \binom{m}{j} p^{j} q^{m-j}\right) \\ &= np \left((n-1)p \sum_{j=1}^{m} \binom{m-1}{j-1} p^{j-1} q^{(m-1)-(j-1)} + \sum_{j=0}^{m} \binom{m}{j} p^{j} q^{m-j} \right) \\ &= np \left((n-1)p(p+q)^{m-1} + (p+q)^{m}\right) \\ &= np \left((n-1)p + 1\right) \\ &= n^{2}p^{2} + np \left(1-p\right) \end{split}$$

Definition of Binomial Distribution: p + q = 1

Factors of Binomial Coefficient: $\binom{n}{k} = n\binom{n-1}{k-1}$

Change of limit: term is zero when k - 1 = 0

putting j = k - 1, m = n - 1

splitting sum up into two

Factors of Binomial Coefficient: $j\binom{m}{j} = m\binom{m-1}{j-1}$

Change of limit: term is zero when j - 1 = 0

Binomial Theorem

as p + q = 1by algebra

How Many Program Crashes?

n runs of program, each crashes with prob. *p*, works with prob. (1 - p)

H: number of crashes

H ~ Bin(*n*, *p*)

$$\mathbf{P(H=k)} = \binom{n}{k} (p)^k (1-p)^{n-k}$$

How Many Ads Clicked?

1000 ads served, each clicked with p = 0.01, otherwise ignored.

H: number of clicks

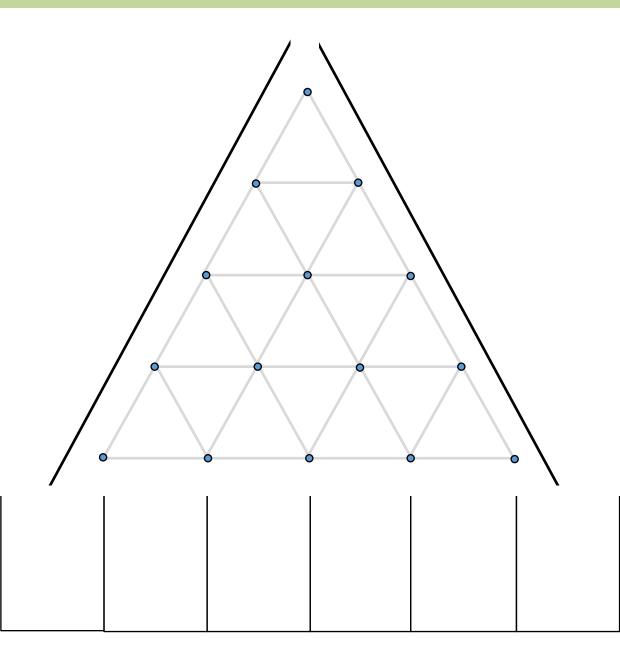
H ~ Bin(*n* = 1000, *p* = 0.01)

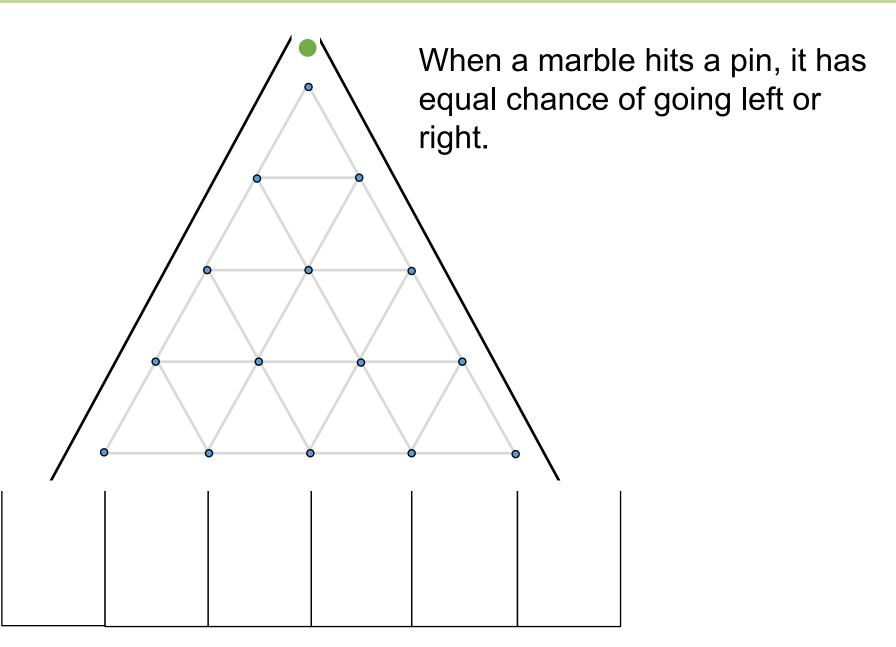
$$\mathbf{P(H=k)} = \binom{1000}{k} (0.01)^k (0.99)^{1000-k}$$

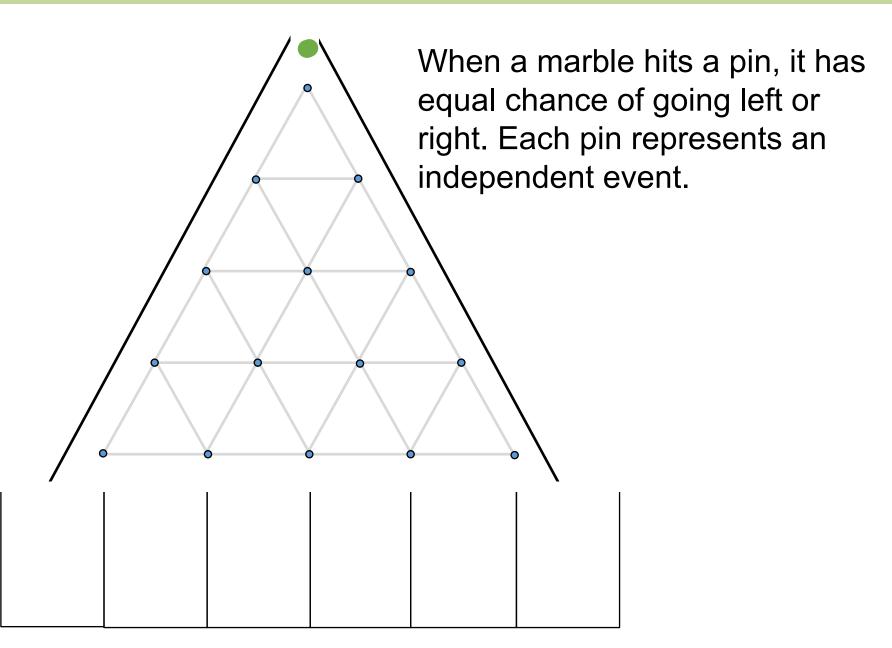
Variance of number of ads clicked?

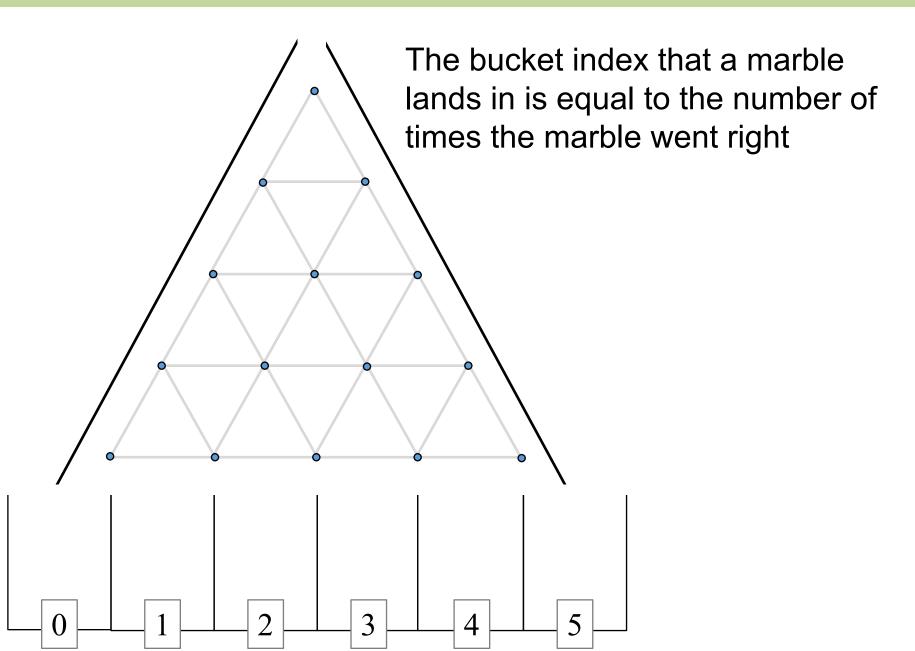
$$E[H] = np = 10$$

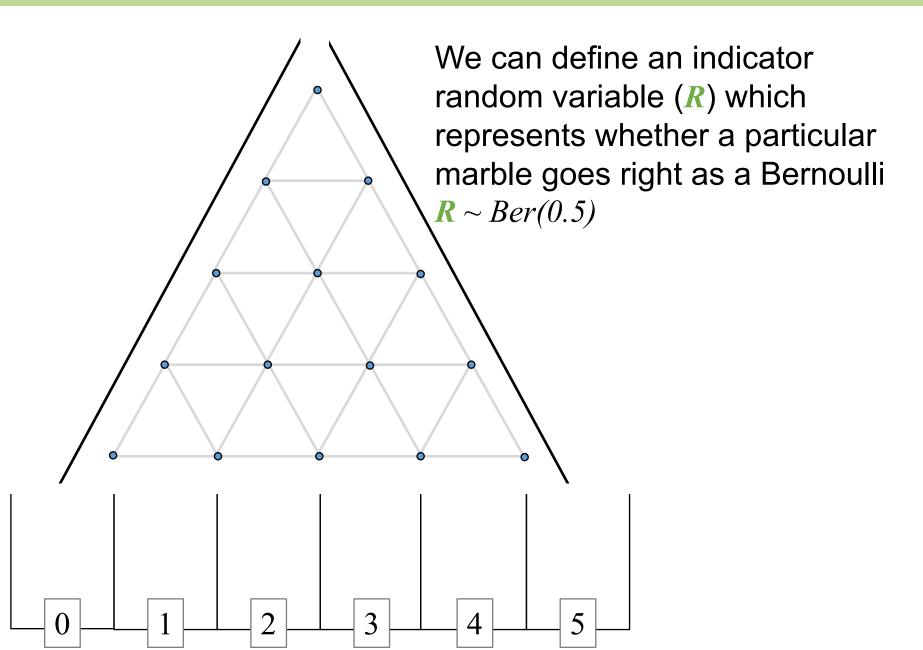
Var(H) = $np(1-p) = 9.9$ Std(H) = 3.15

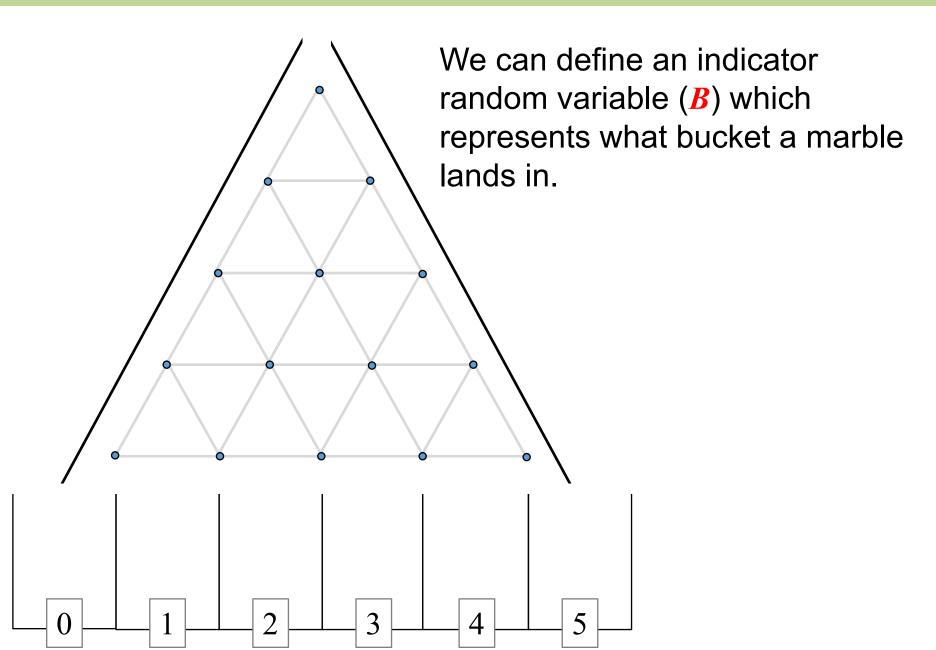


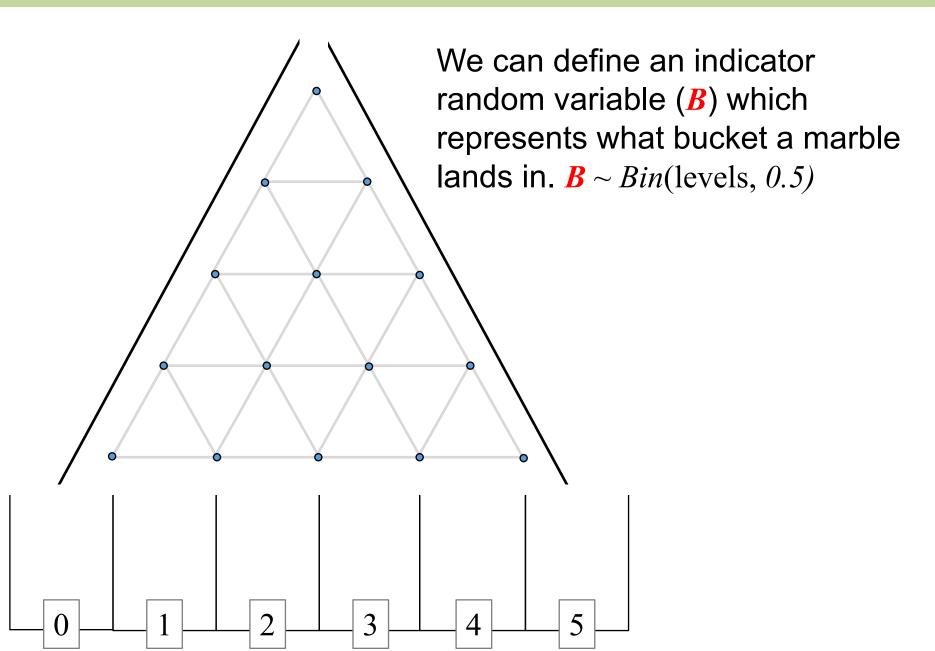


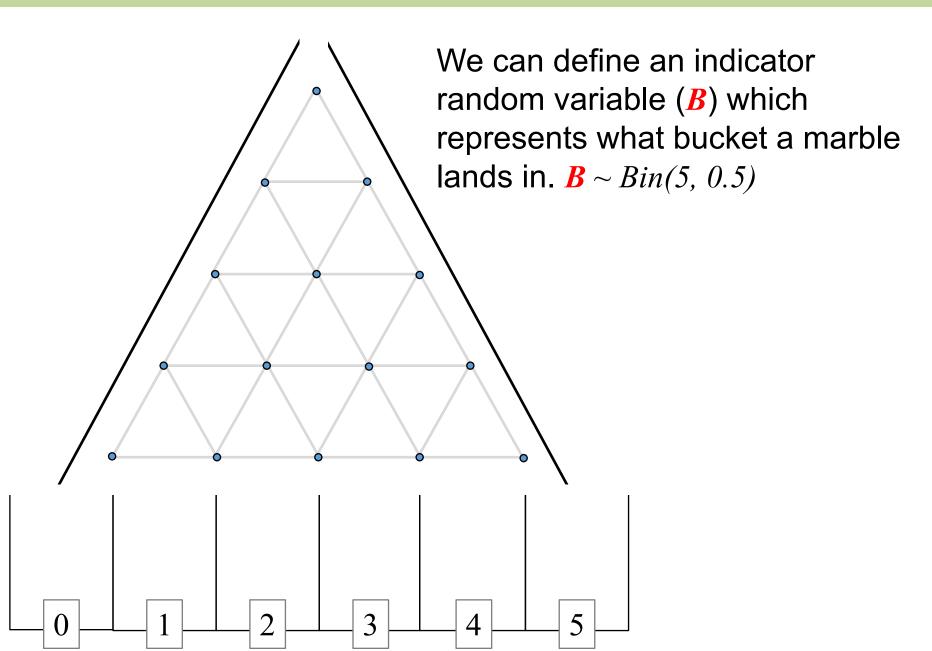


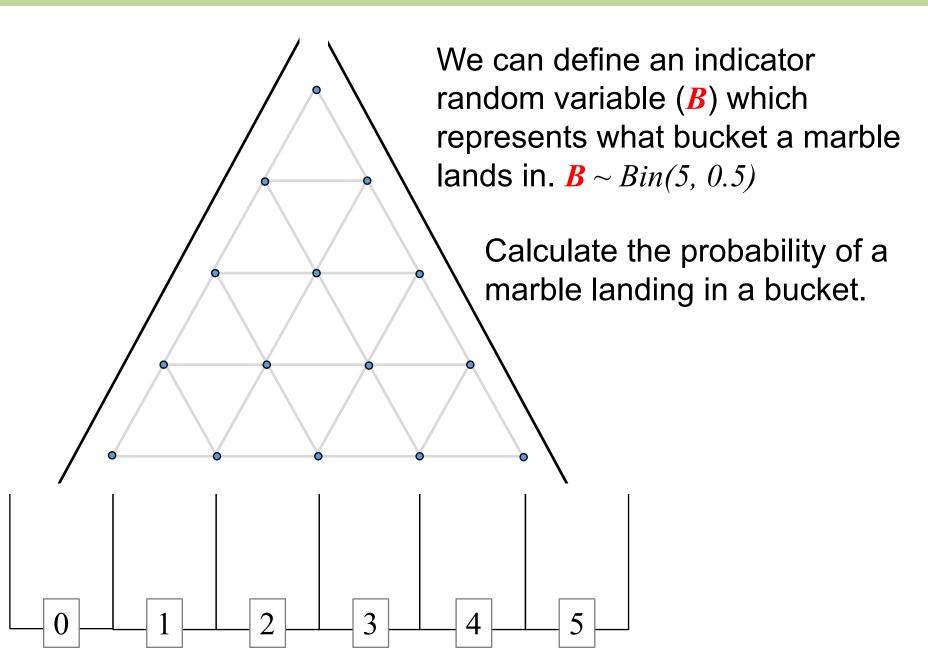


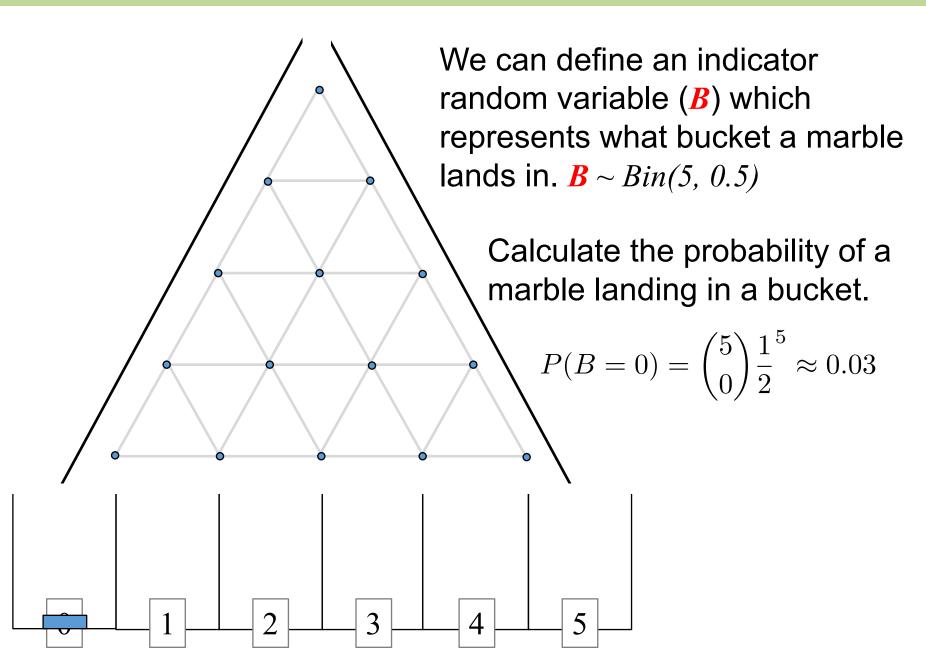


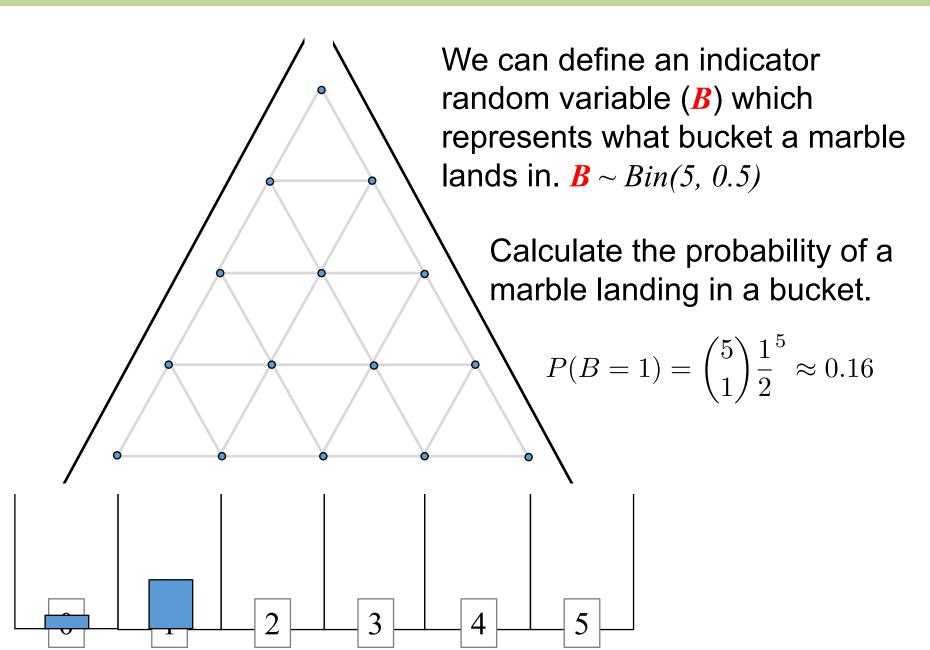


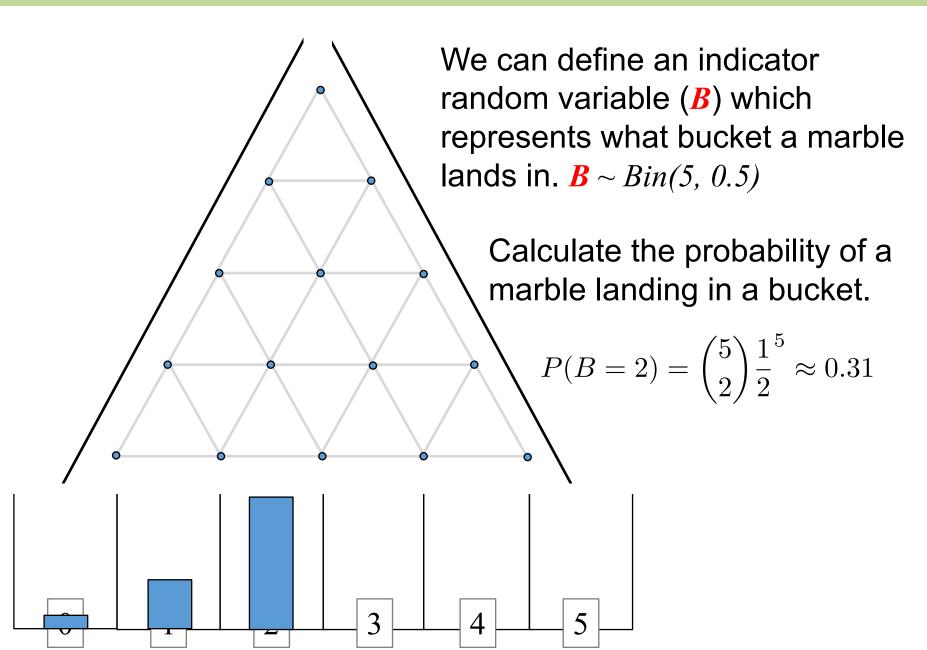


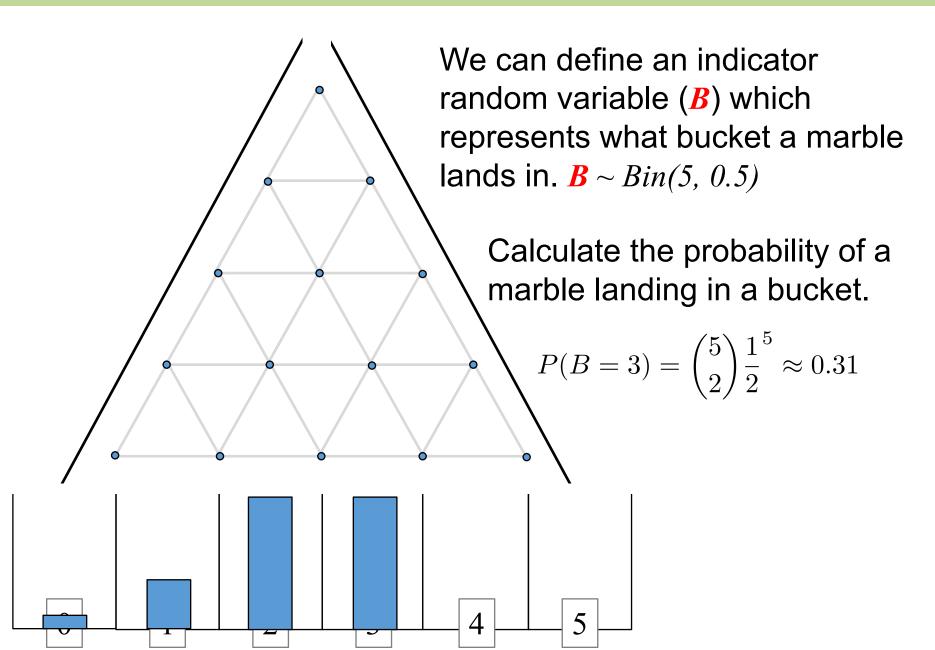


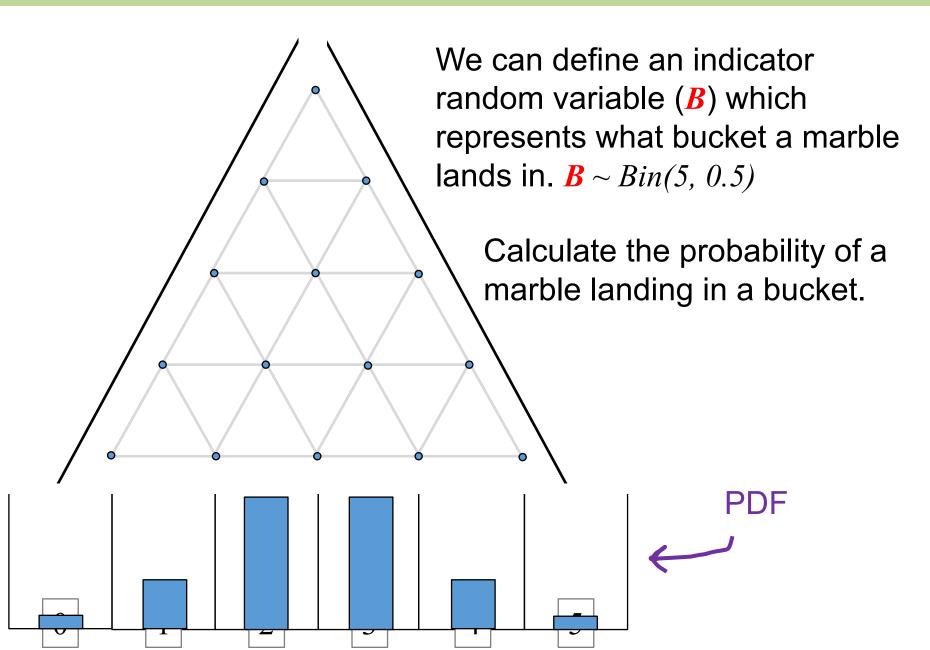






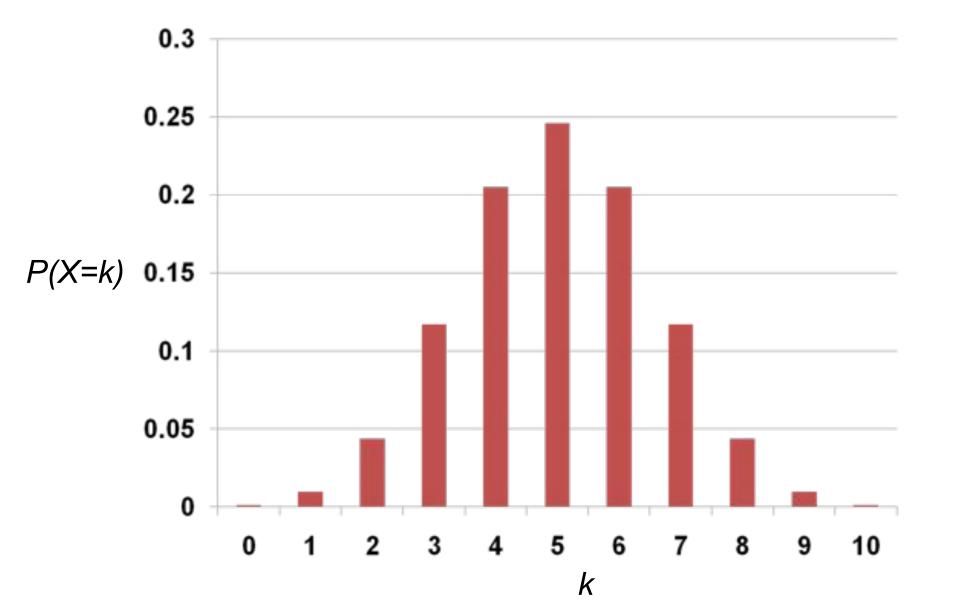




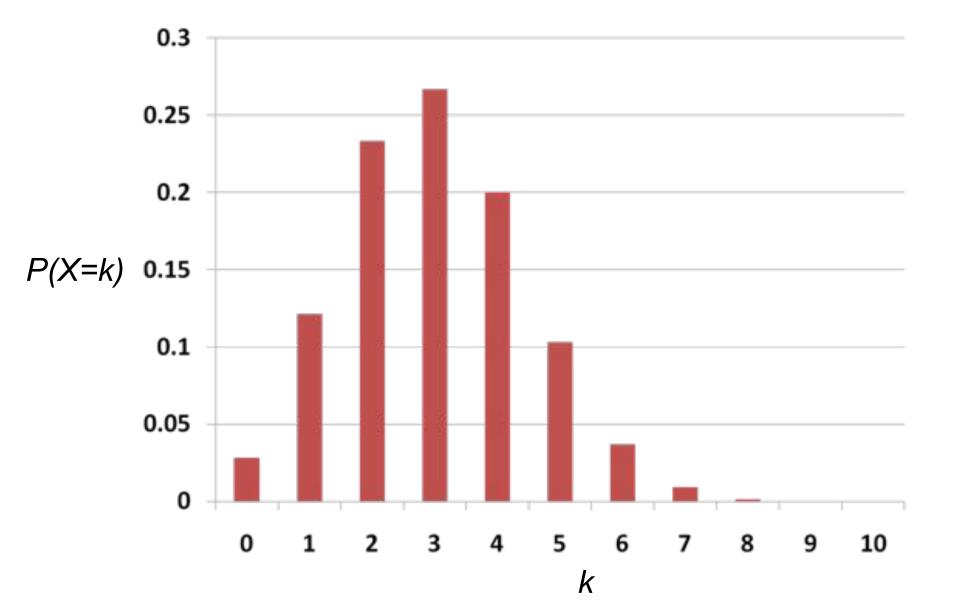


FROM CHAOS TO ORDER

PMF for X ~ Bin(10, 0.5)



PMF for X ~ Bin(10, 0.3)



Genetic Inheritance

- Person has 2 genes for trait (eye color)
 - Child receives 1 gene (equally likely) from each parent
 - Child has brown eyes if either (or both) genes brown
 - Child only has blue eyes if both genes blue
 - Brown is "dominant" (d), Blue is "recessive" (r)
 - Parents each have 1 brown and 1 blue gene
- 4 children, what is P(3 children with brown eyes)?
 - Child has blue eyes: $p = (\frac{1}{2})(\frac{1}{2}) = \frac{1}{4}$ (2 blue genes)
 - P(child has brown eyes) = $1 (\frac{1}{4}) = 0.75$
 - X = # of children with brown eyes. X ~ Bin(4, 0.75) $P(X=3) = {4 \choose 3} (0.75)^3 (0.25)^1 \approx 0.4219$

Probability you win a series?

Warriors are going to play the Bucks in a best of 7 series during the 2017 NBA finals. What is the probability that the warriors win the series? Each game is **independent**. Each game, the warriors have a 0.55 probability of winning? Win series if you win at least 4 games.

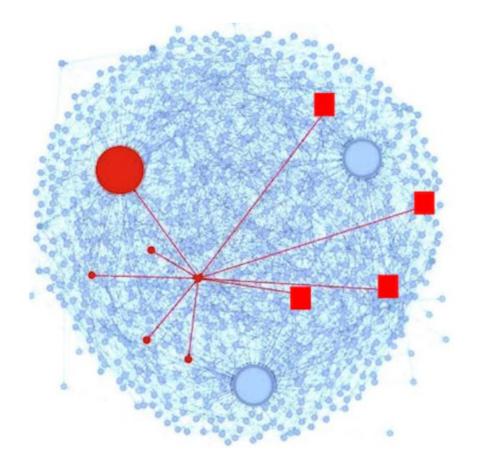
Let *X* be the number of games won. $X \sim Bin(n=7, p=0.55)$. P(*X* > 3)?

$$P(X \ge 4) = \sum_{i=4}^{i} P(X = i)$$
$$= \sum_{i=4}^{7} {7 \choose i} p^{i} (1-p)^{7-i}$$
$$= \sum_{i=4}^{7} {7 \choose i} 0.55^{i} (0.45)^{7-i}$$

i

Is Peer Grading Accurate Enough?

Looking ahead

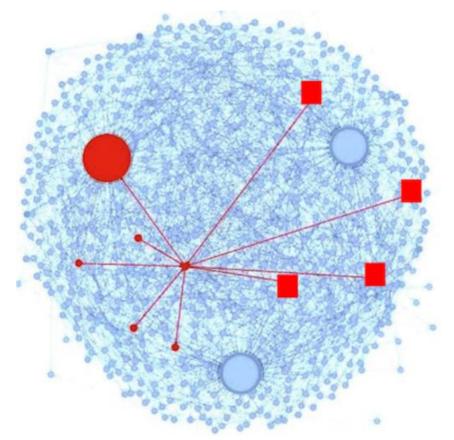


Peer Grading on Coursera HCI.

31,067 peer grades for 3,607 students.

Is Peer Grading Accurate Enough?

Looking ahead



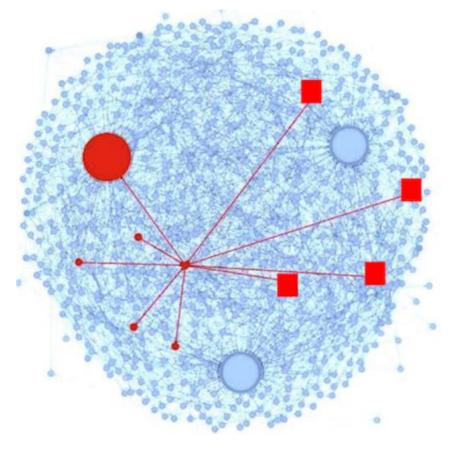
- **1**. Defined random variables for:
 - True grade (s_i) for assignment i
 - Observed (z_i^j) score for assign *i*
 - Bias (b_i) for each grader j
 - Variance (r_i) for each grader j
- **2.** Designed a probabilistic model that defined the distributions for all random variables Problem Param

 $s_i \sim \text{Bin}(\text{points}, \hat{\theta})$

$$z_i^j \sim \mathcal{N}(\mu = s_i + b_j, \sigma = \sqrt{r_j})$$

Is Peer Grading Accurate Enough?

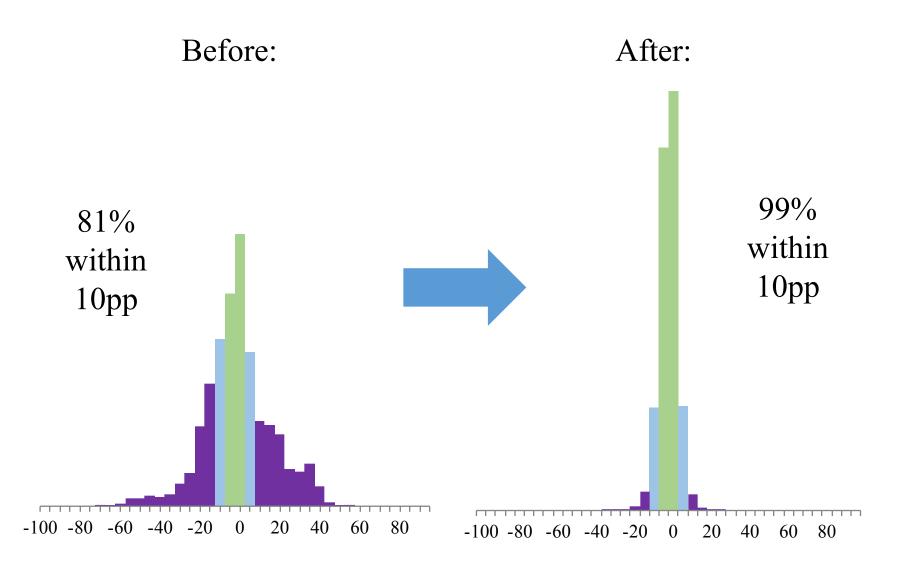
Looking ahead



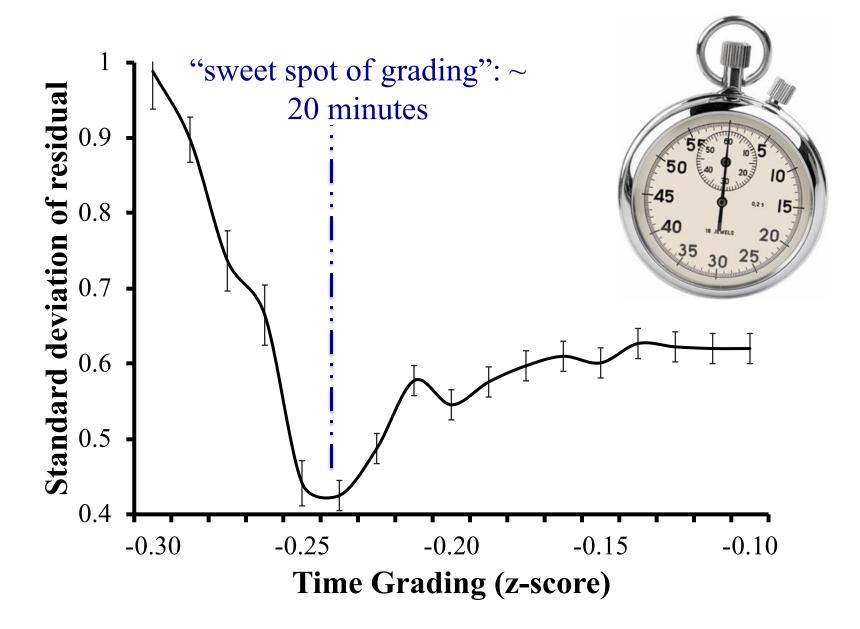
- **1.** Defined random variables for:
 - True grade (*s_i*) for assignment *i*
 - Observed (z_i^j) score for assign i
 - Bias (b_j) for each grader j
 - Variance (r_j) for each grader j
- 2. Designed a probabilistic model that defined the distributions for all random variables
- Found the variable assignments that maximized the probability of our observed data

Inference or Machine Learning

Yes, With Probabilistic Modelling



Grading Sweet Spot



Voilà, c'est tout

